
ScyFhw: An Environment for the Visual Specification and
Execution of Scientific Worknows

Karen M. McCann'
Maurice Yarrow*
Adrian DeVivo*
Piyush Mehrotrd

ABSTRACT

With the advent of grid technologies, scientists and engineers are building more and more
complex applications to utilize distributed grid resources. The core grid services provide a path
for accessing and utilizing these resources in a secure and seamless fashion. However what the
scientists need is an environment that will allow them to specify their application runs at a high
organizational level, and then support efficient execution across any given set or sets of resources.
We have been designing and implementing ScyFZow, a dual-interface architecture (both GUT and
APT) that addresses this problem. The scientisther specifies the application tasks along with the
necessary control and data flow, and monitors and manages the execution of the resulting
workflow across the distributed resources. In this paper, we utilize two scenarios to provide the
details of the two modules of the project, the visual editor and the runtime workflow engine.

INTRODUCTION
NASA's Earth and Space scientists are finding that the raw data being acquired

and downloaded by satellites and deepspace missions is accumulating on data archive
systems much faster than it can be transformed and processed for scientific experiments.
In addition, scientists lack the visual tools that might allow them to rapidly design the
appropriate transformation sequences for their data. The requirements for such a tool
include: rapid visual prototyping of transformation sequences, the designation of
processing pathology handling, the ability to automatically apply designated workflows
to the processing of large sets of raw data files, the collation and post-processing of
results, the advance and repeated scheduling of processing sequences, and the ability to
easily modify these data transformation sequences: to accommodate changes in the intent
of experiments, and to rapidly test new hypotheses. To provide scientists with a
capability that addresses these needs, in this task we are building a GUI-enhanced tool,
ScyFZow, that will allow flow-chart-like assembly of data acquisition and transformation
steps, and will then instantiate this processing. This tool will support all stages: the
automated acquisition of raw data, the distributed processing of this data, and the final
archiving of results. In this paper, after a brief overview of the overall architecture, we
describe two of the modules, the visual editor and the runtime engine, in more detail. We
present two usage examples to describe the two modulcs.

Computer Sciences Corporation ' NASA Ames Research Center
Mail: MS T27A-1, NASA Ames Research Center, Moffett Field, CA 94035
Email: {mcann, yarrow, devivo, pm} @nas.nasa.gov

Motivating Scenarios

In t h s section, we present two scenarios that represent typical problems faced by
scientists who need to process large amounts of information, andor execute large
programs, in a distributed environment that might range from workstations to super-
computers. These two cases are modeled in a ScyFlow chart; see Figures 1 and 2 below.

Scenario 1: Parametric Study: A CFD scientist wishes to vary the position of flaps on an
aerospace vehicle geometry, and then apply a CFD flow solver code to the resulting
geometry configurations for varying values of Reynolds number (aircraft speed) and
alpha (angle of attack). The scientist may wish to run this workflow several times,
changing configurations and pammeter values; alsoj the scientist may wish to intmdnce
some sort of test that will modify the parameter values themselves in order to “zero-in”
on parameter sets of interest, or eliminate certain configurations that fail to meet specified
criteria. Note that this represents 2 levels of parameterization: “i” geometry
configurations, followed by (for each configuration) “f’ (values of Reynolds number)
times “k” (values of alpha), where total runs = i + (i * j * k); where there are i runs for the
first level, then i * j * k runs for the second level, and the first level represents a meshing
program that varies the flap positions, and the second level represents a computation-
intensive CFD flow solver to be run on a supercomputer system. In our example, let i = 3,
j = 3 and k = 4, producing a total of 36 input data sets and 36 jobs, one for each input set.

Scenario 2: Processing ofMars data: A scientist working on Mars mission data needs to
download HDF files (latitude and longitude based) as they become available on agency
web sites. These files typically contain some kind of gathered spectral data in two-
dimensions; where the first dimension is radar, light, or heat, etc., and the second
dimension is a lat-long location for each of the first dimension values. In general, there
will be many small HDF files, and a significant proportion of these HDF files will have
problems or errors: for example, misaligned “corners” of lat-long sections, non-numerical
values in numerical fields, or errors in data values that can be discovered and eliminated
by some mathematical method, etc. After downloading, the files need to be examined for
errors, and then each file with a particular error will need to be processed by the
appropriate “fixer” code. Then the corrected files are “stitched” together into a single
large file of corrected spectral data, which is then subjected to a compute-intensive
spectral processing method. Typically, the results of the processing will be displayed as
contours, or color-mapping, overlaid on a map of the area of interest, which is delimited
by the composited set of lat-long values.

OVERALL ARCHITECTURE
We are developing ScyFlow as part of a larger set of component applications. In

order to allow our component applications to “talk” to each other, we have created a
“container” application called ScyGate that manages and coordinates the interactions
between the components. Initially, these contained applications will be:

ScyFZow: workflow editor, generator and execution engine (the focus of this
paper) ;

J

Scyhb: parameter study capability (next generation of ILab[l], with some
additions so that it can be used by ScyFlow);

UniT: (Universal File Translator) program that generates translation code for
transforming one data format into another data format;

FiZeTester. P e r m utility that generates a Per1 program that will parse any given
ASCII data file and return designated values - can be used condition testing
within a workflow.

Any additional modules: our architecture will allow additional component
applications to be incorporated into the system at both an icon-based (data
configuration) level and a programming-based level (use of a separate Registry
API).

A ScyGate local server runs in the background and component applications open sockets
to this server. Shared data is kept in a “Registry” (which is both an data tree object and a

environment is to provide a framework for the deployment of several related applications,
and to extend this framework in two ways: first, allow users to attach their own icons to
the ScyGate “icon corral” so that they can be launched from ScyGate (and, possibly,
passed as input some file paths known to ScyGate); second, to allow developers to write
code that attaches to the Registry server, so that the code produced by these developers
can also “talk” to other ScyGate applications. The framework also makes it easy for us to
handle the updating of individual codes, since version information is one of the things
handled by the Registry.

&s file) zqd is ~~~qagv(! by ~ \ e ~ ~ ~ ~ p g ~ ~ sp,~s’er. 01;r ~T~ i~ C ~ ~ Z ~ E R thic 2ap”li~c~ a --“

Architecture of ScyFlow

ScyFlow is an environment that supports the specification, execution and monitoring of
workflows. It consists of two major components:

ScyFlowVis provides the visual interface for specifying workflows. It also
translates the visual flow graph into internal formats (XML, dependency list,
pseudo-code) for storing and for communicating with the other components. The
GUI can also be used as a visual interface to monitor the execution of workflows.

ScyFlowEngine provides the set of services required for the overall execution of
the workflow across distributed grid resources, talung into account the specified
control and data dependencies. A set of APIs will allow applications other than
ScyFlowVis to also connect to the ScyFlowEngine in order initiate and monitor
executions of worlcflows.

Definitions of ScyFlow Terminology

Below we define some terms that we use for data objects in the context of ScyFlow.

Process: Basic unit of execution in any workflow; can be any type of script, or any type
of compiled file, or a single command. The Process Object contains the data necessary to
execute any given process - the type of Process, paths to necessary files and any other
required data: command line arguments, special queue directives, etc.

Experiment: A “railroad” sequence of processes (no control structures) that is to be
executed sequentially. Any process in an Experiment can be parameterized by a sequence
of input values. The cross product of the input values gives rise to a set of independent
input parameters that can be executed independently, essentially as “job” units of an
experiment in a parametric study. The Experiment Object contains pointers to the
constituent Process objects, along with information about the parameterized inputs such
as the input files, the locations within the files and the values to be used for these
locations. For the purpose of explaining ScyFlow, an Experiment and a Process can be
regarded as interchangeable, since an Experiment is just a set of Processes; we use the
term “executable” to interchangeably refer to an Experiment or a Process.

WorkFZow: A set of Experiments andor Processes along with any control structures and
data dependencies necessary for executing the subtasks. Workflow objects are really
“container” objects since they point to other Experiment and Process objects, but they
also contain control flow information in the form of specific flow structures. All
executable data, and control flow data, is represented as vertices in a directed graph,
where each vertex is either an executable, or a control structure (Splitpath, Join, Cycle, or
Pause).

Job: A Job object represents a single input data set, attached to an associated workflow
graph or Experiment object. Thus, an Experiment will result in multiple Jobs, one for
each execution of the parameterized data set. A Workflow will have at least one Job, and
each Job represents one traversal through the Workflow directed graph. A Workflow that
has no Experiments (parameterized processes) will give rise to one Job in which (some
sub-set) of Processes will be executed only once; a Workflow with Experiments will have
many Jobs, and each Job will execute (some sub-set of) Workflow executable vertices
once. (Note that in each case the sub-set of executed Experiments or Processes may
include all Workflow vertices.)

IMPORTANT: an Experiment object contains data flow information, i.e., information
concerning parameterization, whereas a Process does not. ScyFlow’s data flow
specification - as far as parameterization goes - takes place at the Experiment level.
However, Splitpath and Join control structures at the ScyFlow level can cause data sets
(iobs) to be multiplied or joined; when the workflow is executing, the ScyFlow execution
manager keeps track of the data set totals, applying control flow variants to parameterized
set specifications, in a manner completely transparent to users. The ScyFlow monitor
display will feature data set totals, since these are determined at run time if any control

SCYFLOW VISUAL INTERFACE: ScyFZowViS
The ScyFlow system provides a visual interface for specifying the graph that

represents the WorkFlow. Along with manipulating such graphs (e.g., creating, storing,
modifymg), a companion interface allows users to utilize the workflow graph to monitor
the progress of the execution of the workflow. In this section we focus on the
specification interface, providing details of the types of workflows that can be specified
within ScyFlow.

At the top level, the directed graph in ScyFlow has been designed to model the flow of
operations only; data specification appears within the context of the Processes and

(Experiments or Processes), and 4 for control operations: Splitpath, Join, Cycle, and
Pause; these are represented within the directed graph display by different icons. There
are no vertices representing data, only one type of vertex which can represent operations
upon data. Arrows indicate the flow of operations.

Cvrrar;m*-+ L I A ~ A A U A L ~ ~ ~ & (s e bd!OW.) Tf~%e Z”u d y 5 Cf ’.‘efl&& c3e fer excck$!es

Data Dependencies

In order to minimize user input, data dependencies are handled in the following ways.
First, d.t. depexk~cies between ~ ~ K P S S P S aze gperifipx1 within ScyLab merely by the
order in which Processes are entered (this order can be easily modified by user.) If
Process B is entered after Process A, ScyLab code “assumes” that B is dependent on
some files output by A, and the execution code handles output files from A accordingly.
A similar model is followed by ScyFlow; whenever user adds a vertex to the directed
graph, that vertex is either the first vertex (no dependencies), or is being added to a pre-
existing vertex. For example, if user adds vertex B to vertex A, ScyFlow also assumes
that B is dependent upon A, and that A must be executed before B can be executed.

Second, between executables in a Workflow, at the ScyLab level user must mark certain
Process-specific files as “Input to Next Experiment . . .’, This information is used by the
ScyFlow execution manager to assure that essential files are correctly copied and/or
archived in the sequence of directed graph specified executions. For user’s convenience
ScyFlow will include a data-dependency modeling display that will allow user to easily
view and edit the data dependencies between portions of a Workflow; ScyLab will
include a similar feature. The MIS for both ScyLab and ScyFlow will include functions
that will retum or change this information.

Control Vertices in ScyFlow

The small number of types of vertices in ScyFlow was achieved by making the control
vertex types represent sets of similar operations. For instance, there is only one Cycle
vertex, but the Cycle Properties contains options which can be set to execute different
kinds of loops: counter loops, “while” loops, and “do . . . while” (or “do . . . until”) loops.

A Splitpath vertex has similar options. It can have no test at all: this is an “AND”
condition that indicates that the output from the previous executable should be used as
input for ALL the following executables. This option multiplies the Jobs (data sets) and
may be set to execute simultaneously on different systems. Secondly, the SplitPath can

have a test based on either the return value of a program, or the existence or non-
existence of a file; this is an “OR’ condition. The return value of the specified OR
condition test is then used to determine the following path, which will be the only path
(out of all the possible paths) that gets executed for any given data set. Note that an
“AND” Splitpath introduced at any point in a workflow - including the beginning of a
Workflow - can also have the effect of starting up separate simultaneous path(s) of
execution at that point.

The Join vertex is simpler: there are only two types of Join (1) an “AND” Join, where
execution at the Join must wait for input from all previous paths in order to continue; (2)
an “OR’ Join, where input from any previous path can be passed to next executable, with
no waiting. (Note in future we wlii probabiy add some Join options concerning fiie
staging, depending on user requirements; for example, user may wish to copy/move/mark
sets of files from previous executables in some way required by the executable following
the Join vertex.)

/

The Pause vertex is procedural only; it is intended to provide for cases where some data
examination has to be performed before continuing the execution of the Workflow, or to
provide for pathological cases, etc. Pause options include email, beep, etc.; a special
Pause pop-up display will be provided so that users can examine paused data sets (Jobs)
and mark these for discarding or continuing through the workflow.

In ScyFlow, SplitPath and Join vertices are always labeled with their types: “OR’ or
“AND”, appearing in different colors. This disambiguates the meaning of these vertices,
as far as control flow is concerned, in any given display. An alternative to the “OR’ and
“AND” labels might have been to have different types of vertices, drawn in different
shapes, representing the varieties of Split and Join operations; but, this would have made
the display more confusing, and would probably have required (in order to carry out such
a design decision to its “logical” conclusion) many more different shapes and types of
icons in order to distinguish various operations.

The Data Train Analogy

The closest “real-life” analogy to ScyFlow’ s modeling notation is to compare the
Workflow transit of the directed graph to the path a train would take through a series of
railroad switches, while visiting several destinations before the end of its journey. Each
separate train is a Job (or data set); each stop is an executable where data is unloaded and
processed, and then different data is loaded back onto the train. Splitpath vertices are
switches to several other tracks; Join vertices are switches that join two or more sets of
tracks. Some options set by ScyFlow users can cause one train to get cloned (copied) into
two or more trains; and, one or more trains can “wait” at Join vertices until other trains
arrive, so that all Join-specified trains can merge back into one train. In the simplest
SplitPath case, with only OR conditions in any SplitPath vertices, a train sets out on a
journey but its exact path and destination are not determined until each SplitPath test is
done and the train is sent down one path instead of another. (Note that this presumes an
exclusive OR only; ScyFlow does not currently model an inclusive OR, but this will be
added.)

i

Design Motivation

The motivation behind our design is as follows: it was important to create a notation
system that was both easy to understand, and at the same time flexible and powerful
enough to model complex workflows. As with most (if not all) directed graph problems,
granularity is a very important issue; the ScyFlow design would not be successful if the
ScyFlow workflow charts are ambiguous or too difficult to create and understand. The
problem is that any representation of a complex real-life workflow problem will expand
to be so visually complex as to be unsuitable for use and for visual “cues” about
structure. Even simple workflows can be very difficult to model. In terms of
programming implementation this is an ongoing problem, made even worse by the
graphhi difficuities of creating a dispiay where two or more vertices do not overiay each
other. Our aim was to create a more visually intuitive display by simplifying the
workflow representation: we have no data vertices and the number of vertex types has
been minimized. We make the assumption that users will impose their own complexity
on any given problem; it is important to keep the basic design as simple as possible in
order to accommodate this. The “collapsdexpand’ paradigm for a graphical interface
needs to be used as much as possible, so that detail can be hidden in order to avoid a very
large and overly complex display. ScyFlow implements this by allowing an executable
vertex to “expand” into a ScyLab Experiment which can be editedcreated separately in
ScyLab, then collapsed back into a ScyFlow executable vertex.

ScyFlow Representations of the User Scenarios

We now describe how the two scenarios presented earlier would be represented using the
ScyFlow notation.

Figure 1: ScyFlow CFD user scenario

Figure 1 shows the ScyFlow workflow representation of the first user scenario, multiple
levels of parameterization. Note that this workflow is a “railroad”, that is, a straight line:
this is because there are no control structures in this workflow; no decisions are made at
run time, and all possible data sets (Jobs) will be executed since there will be no tests

executed to eliminate any of them. The first executable, labeled “Flaps”, would produce 3
geometries with varying flap positions; since this is not compute-intensive, user might
run it locally, perhaps on a workstation. The following “Pre-Processing” might involve
fixes and/or changes to the geometry grids; also, local. The FlowSolver would probably
be executed on a supercomputer; and the post-processing and graphics might run on some
set of graphical systems.

Figure 2: ScyFlow Mars data user scenario

Figure 2 illustrates the second user scenario. The user would construct a ScyFlow
Workflow where the first executable is a “web scraper’’ that will automatically download
files from a site according to some constraints (e.g., all new files since a certain date, all
files in some directory, etc.). Note that the ScyGate suite of utilities will contain a
program that will generate this sort of program or script, either in Per1 or in Korn shell.)
The second vertex in user’s workflow would be a SplitPath control structure vertex, that
will run a program that will apply several tests to each downloaded file, and return certain
values indicating the appropriate “fixer” program that should be run on each file. The
SplitPath vertex will have several branches, one for each fixer program. Then, all paths
leaving the Splitpath vertex will be followed by a Join control vertex with an “OR’
condition, indicating that any data set processed by any of the paths following the
SplitPath vertex can then be passed to the next processing node following the Join control
vertex. Following the Join vertex, the user would add an executable that would take all
“fixed” files as input, and use them to composite a large file. Adding another SplitPath
test would determine whether the composition had accumulated a sufficient number of
files to continue to the next executable. Once this test succeeds, the next executable
would apply a compute-intensive spectral decomposition operation to the large data file,
presumably on some available supercomputer resource. Finally, a graphics post-processor
executable would get the results of the spectral program, and output graphics files for
display. Each stage of this Workflow might or might not be accompanied by archiving
instructions which will be performed at run-time by the Workflow execution manager.
Note that the second SplitPath test has only one path, but, there is an “implied” first path

whch is to do nothing unless the Splitpath test succeeds. The first ‘WebScraper’,
executable would continue to send data sets down the workflow, but the final spectral and
graphics executables will not be executed until the final test succeeds.

GUI vs. API Operation of SCyFlow and ScyLab: Automated Scripting

Both ScyFlow and ScyLab will provide a data-file based API, plus the ability to generate
this file from any GUI-constructed Workmow or Experiment object. This gives
programmerdusers the ability to “script7’ any given execution of a WorkFlow or
Experiment, since the generated data file - which will be used as input for the API - can
be parsed, and re-run, by other programming modules.

SCYFLOW RUNTIME SYSTEM: ScyFlowEngine
The workflow execution engine consists of two components. The fust of these is the
dependency handler, which expands compiled dependency data. The second component
of the execution engine is the server/sub-server architecture, which spawns the work
indicated by the directed graph and subsequently monitors the progress of jobs and
cieiermines wilicii & ~ C I I & I I ~ wuik iiiily i~ iuii fioiii ;“le coiiipletkii-siii?i.i~ i i i f ~ ~ l ~ t i ~ i i ~f
finished dependencies.

Machine A

Machine A

Machine B

Figure 3: Operation of the WorkFlow Execution Manager

The workflow execution engine is a server/sub-server architecture. It utilizes socket
communications for the transfer of job instructions from the server to the sub-servers and
for transfer of job completion information from the sub-servers to the server. The sub-
servers are basically “dumb” and do no dependency analysis or runtime decisions. The
server contains the directed-graph compiler, which produces a dependency list. This list
is used to determine which components of the user work may be processed (dependents)
once any prior component (a dependency) has been successfully completed. Note that
currently, control flow capability has been developed and is working, though both control
and data flow specification are done in the GUI graph editing. Thus each graph traversal
implies a single path of execution of user work through the graph. The server also
contains the apparatus which spawns sub-servers onto user- or resource-broker-
designated compute machines. The spawning of a process can be accomplished by either
ssh, gsissh, or the NAS JobManager. Once a sub-server has been spawned onto a

designated resource, the sub-server will thereupon open a connection to the server's
listener-socket and request from it the instructions to be performed. The server is based
on a multiplexing architecture and can simultaneously handle any number of user jobs
flowing through any number of graphs whose vertices can be partitioned onto any
number of remote resources. At this time, each user job is serviced by one sub-server,
but our architecture will pennit a single sub-server to service multiple jobs running on its
particular resource. Because the sub-servers communicate back to the server
immediately with any vertex completion statuses, monitoring of job status is real-time.

Sub-server requests work
Scy Fiow
WorkFlow
Engine

Su b-Server

n ScyFlow
WorkFlow
Engine
(server)

Sub-server forks/execs
job handler,

then drop-down enters (Sub-server)

listen-socket
loop. When
work done, job
handler notifies sub-server, w
which exits listen-socket loop

n Sub-server reDorts iob
completion status, '
reauests new work Engine

(server)

Figure 4: WorkFlow Life Cycle

Here is a detailed look at the life cycle of a workflow graph in our serverhub-server
architecture. Once the graph has been constructed (either by the GUI or API) and user-
process attributes given appropriate values, the GWAPI will open a connection to the
server listener-socket and pass to it a serialized graph object or graph file-package
location. The server then compiles the graph and produces a dependency list for the
graph vertices. Then, the first dependent with no dependencies is chosen and a
"HostServer" is spawned onto the remote machine indicated for this vertex (chosen either
by user designation or resource-broker). The HostServer opens a connection to the
server, identifies itself by JobName and requests work to be performed. The server
passes to it instruction(s) to perform. The sub-server chooses an appropriate ')ob
handler" to perform the work and thereupon forks and execs this job handler, thereby
allowing the sub-server to avoid blocking while the work is being performed. The sub-

server opens its own drop-down listener-socket loop and waits for either completion
status from its job handler or for possible shutdown/discontinue requests from the server.
When the job handler has completed the user work and notified the sub-server, the sub-
server exits its listener loop and reports completion status for this job to the server. The
server updates its jobhertex data object with completion or failure status for the vertex,
and then determines, using the dependency list, which next dependent task may be run, if
any. If the next valid dependent vertex is on the same machine as last, the reporting sub-
server is given this work, otherwise the sub-server is given shutdown instructions, and a
new sub-server is spawned onto the resource selected for this next vertex. Subsequently,
this new sub-server will open a connection to the server and obtain the vertex work, etc.

Related Work

Some related projects are: SciRun,-developed at the University of Utah and used for a variety
of applications including molecular biology [2]; Cantata / Khoros, commericall y developed
in Utah and used for image processing[3]; UNICORE, developed in Germany as a generic
workflow package[4]; and DAGman, part of the CONDOR project, developed by Myron
Livny at the University of Chicago [5].

Conclusions

The new ScyFlow system presents two innovations: a new design for workflow modeling,
and the ability to handle both control flow and data flow within any given workflow. This
powerful and flexible system provides generic capability for creating and running workflows,
without being domain-specific; in addition, ScyFlow requires absolutely no
~‘instrumentation’’ of any participating codes, that is, users can run ScyHow without doing
any programming whatsoever. Our object oriented design restores state for workflow data
sets, since WorkFlow objects are easily serialized to/from files, and transported over sockets.
ScyFlow’s “scripting” ability (the MI, Applications Programming Interface) is not only
convenient for users - since WorkFlow objects can be “dumped” to a script file and used to
re-run the workflow - but is also usable by external programming modules for deployment in
many distributed environments.

,,.

References
[11 Production-Level Distributed Parametric Study Capabilities for the Grid, M-Yarrow,
K.M.McCann, E.Tejni1, A.DeVivo. Grid Computing - GRID 2001 Workshop
proceedings, Denver, CO, November 2001.
[21 software. sci . utah . eddscirun . h tml
[31 www .khoral .com
[4] w w w . unicore . org
[SI www.cs.wisc.eddcondor/dagman

